
Pergamon
1111, J .\o/id\ .";/nu'(urc.\ Vol. 3.2, No. IJ. pp. 1,S73 1892. 1995

Copynghtl"' 1995 Elsevier Science Ltd
Prinled in Great Britain. All rights reserved

0020--76;-;395 $Y.SO + .00

0020-7683(94)00234-7

STOCHASTIC BOUNDARY ELEMENTS FOR TWO­
DIMENSIONAL POTENTIAL FLOW IN HOMOGENEOUS

DOMAINS

IGOR KALJEVIC and SUNIL SAIGAL
Department of Civil Engincering, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

(Reedr"" 21 April 1994: in rerisc"flmll 15 September 1994)

Abstract-- A stochastic boundary elcmcnt formulation is presented for the analysis of two-dimen­
sional steady state potential flow through homogeneous domains. The operator of the governing
differential equation is assumed to be random and is described by a set of correlated random
variables. The perturbation method, in coni unction with the boundary clement method. is employed
to derive the systems of equations for the unknown boundary variables and their respective first
and second order derivatives with respect to the random variahles. These quantities are then used
to calculate the desired response statistics. A general procedure is developed which is next applied
for the specific cases of random geometric configuration and random material parameter. The
random geometric configuration is modeled using a finite set of correlated random variables. The
random material parametcr is modeled as a homogeneous random field which allows the use of
deterministic fundamental solutions and lI1tegral representations for homogeneous domains. The
random field is tirst discrctized into a set of correlated random variables and then the general
procedure is applied. A transformation of the correlated random variables into an uncorrelated set
is performed to reduce the number of numerical operations. The results for the houndary variahles
are used to calculate the response statistics of internal potentials. These calculations require the
modeling of the interior of the domain undcr consideration. Several models for reprcsenting the
interior of the domain are presented for both random configuration and random material parameter
and their influence on the response statistics is analysed. Distributed sources arc considered in the
present study using the particular integral approach. A number of numerical examples are presented
to demonstrate the validity of the present formulations. The results obtained from the present
analyses are compared with tlwsc obtained from Monte Carlo simulations with 5000 samples and
a good agreement of results is observed.

I. INTRODLCTION

The randomness in the analysis of a physical problem may arise due to: (a) uncertain
material and geometric parameters of the domain being analysed, and (b) random external
influences that act on the object. Problems that involve random properties of the domain
are referred to as parametric random problems, and those that involve random excitations
are referred to as nonparametric problems (Benaroya and Rehak, 1988), Random properties
of the domain result in a random operator of the difTerential equation that describes the
problem. Only a few analytical solutions are available in the literature (Song, 1973;
Adomain, 1983) for the solution of paramctric random boundary value problems. Approxi­
mate methods are therefore required to be developed for the analysis of realistic problems
arising in engineering practicc. Most of the numerical techniques for the treatment of
problems with random operator have been developed in the finite element framework.
These include perturbation methods developed by Liu el al. (l986a, b, 1988), the basis
random variable method (Lawrence, 1987) and the spectral decomposition method
(Ghanem and Spanos, 1990). Thc research on probabilistic treatment of problems in
structural mechanics has been summarized in textbooks, among others, those by Lin
(1967) and Augusti el al. (1984). Current research trends and applications of probabilistic
formulations to a variety of problems in structural engineering, such as reliability theory,
stochastic finite element method, geotechnical engineering. fatigue reliability and stochastic
fracture mechanics have been presented (Konishi el 01.,1985).

Ixn
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The boundary element method (Banerjee and Butterfield, 1981) possesses some
inherent advantages over the finite element method that make it particularly attractive for
the solution of probabilistic problems (Kaljevic and SaigaL 1993). The application of the
boundary element method for the solution of parametric boundary value problems,
however, has been initiated only recently and only a few publications are available in the
literature. Ettouney et al. (1989a, b) and Daddazio and Ettouney (1989) considered the
material properties as random variables for two-dimensional problems in elastostatics and
for radiation from a pulsating sphere, respectively. A general perturbation method, in
conjunction with the boundary element method, was developed by Kaljevic and Saigal
(1993) for the treatment of two-dimensional problems in elastostatics that involve random
domain parameters such as a random configuration of the domain or random material
properties. The parameters defining the random configuration were modeled using cor­
related random variables, and that describing the random material was modeled using a
homogeneous random field. The assumption of the homogeneous random field and the use
of the perturbation method, where all quantities that depend on the random parameters are
expanded in a Taylor series about the mathematical expectations of the random variables,
allowed the use of the fundamental solutions for homogeneous domains in the analysis of
problems with random material parameters. The systems of equations were derived for the
response variables and their respective first and second order derivatives with respect to
the random parameters. These quantities were later used to calculate the mathematical
expectations and variances of the desired response variables. The derivatives of the bound­
ary element kernels were obtained using analytical differentiation and the systems of
equations obtained were solved using direct techniques.

The formulation described above is extended in this study for the treatment of problems
of two-dimensional steady state potential flow through homogeneous domains. The ran­
domness due to both a random geometric configuration of the domain and a random
material description are studied. The parameters that describe the random contour of the
object are modeled using a set of correlated random variables. The cases of circular and
elliptical contours are analysed in detail. The derivatives of the boundary element kernels
that are required in the analysis are calculated analytically. The strongly singular terms and
their derivatives are calculated indirectly, using a uniform state of unit potential along the
contour (Banerjee and Butterfield, 1981) and the implicit differentiation technique (Saigal
et al., 1989), respectively. It is shown that the derivatives of weakly singular terms do not
introduce higher order singularities, which allows the use of standard numerical integration
schemes in their calculations. The distributed sources within the domain of the object are
treated using the particular integral approach (Pape and Banerjee, 1987; Henry and Baner­
jee, 1988). The particular integrals as well as their derivatives are derived for several cases
of distributed sources. The domains characterized by a random material parameter are
analysed next. It is shown that for certain boundary conditions, and in the absence of
distributed sources, the random description of the material parameter does not affect the
response of the object. When domain loads are present, the random material parameter is
modeled using a homogeneous random field. The random field is first discretized into a set
of correlated random variables defined for each boundary element, and the general pro­
cedure is applied to obtain the response statistics of the unknown contour variables. The
transformation of correlated random variables into an uncorrelated set (Kaljevic and
Saigal, 1993) is performed to reduce the number of numerical operations. Only a small
number of transformed random variables with the highest variances are retained in the
analysis.

The developments concerning the response statistics of internal potentials are also
presented in this paper. These calculations require the modeling of the interior of the
domain. In the case of a random geometric configuration, the derivatives of the coordinates
of internal points with respect to the random geometric parameters are required in order
to calculate the derivatives of the internal potentials. Several schemes for modeling the
interior of the domain are presented and their influence on the response statistics is analysed.
It is shown that the assumptions on the randomness of the interior of the domain do not
affect the response statistics of the boundary variables. In the case of a random material
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parameter, an additional random variable is introduced for each internal point. If the
response statistics are required at a large number of internal points, a significant increase
in the CPU time requirements may result. The use of transformed random variables in the
analysis significantly reduces these additional CPU requirements.

Several numerical examples are solved and the results are compared with solutions
obtained from Monte Carlo simulations to verify the accuracy of the formulations
developed in this study.

2. DETERMINISTIC BOUNDARY VALUE PROBLEM

A review of the boundary element equations that describe deterministic potential flow
through a homogeneous medium is first briefly presented to introduce the notation. The
governing differential equation, its properties and the techniques employed for analytical
solution may be found in standard mathematical textbooks (Flanigan, 1983; Hildebrand,
1972). Details of the boundary element formulation for a numerical solution of this equation
may be found in, for example, the text by Banerjee and Butterfield (1981).

A steady state potential flow through a homogeneous domain, Q, bounded by a
contour, r, is described by the Poisson's equation, given as

(I)

where <D is the potential, 'P represents distributed external sources and sinks, and k is the
material parameter of the domain. Using Green's second identity (Flanigan, 1983), com­
bined with the fundamental solution for an infinite medium, an integral representation for
the potential, <D, is obtained as

c (~)<D(~) = f, [G(x, ~)<Dn(x) - F(x, ~)<D(x)]dr(x) + In G(z, ~)'P(z) dQ(z), (2)

where <Dn(x) is the normal derivative of the potential, cD(x) ; c (~) is the jump term; G (x,~)

and F(x,~) are boundary element kernels, given as

I I Y n
G(x,~) = - -logr F(x,~) = - -----"----"-.

2n 2n r2
(3)

x and ~ denote two points on the contour, r, with respective coordinates (Xl> X2) and (~l'

~2) ; r is the distance between the points x and ~; n", p = 1,2, are the components of the
outward normal vector; and Y" = xp-~p. Equation (2) is discretized using boundary
elements to obtain the system of equations for the boundary variables as

[F]{cD} = [G]{cDn } + {'P}, (4)

where {cD} is a vector of potentials defined at the nodes resulting from the boundary element
discretization, {cDn } is a vector of boundary normal derivatives, {'P} is a vector ofdistributed
domain sources, and [G] and [F] are boundary element system matrices. For a boundary
element, e, these matrices are given as

[FL = rF[N]J dry

[GL = rG[N] Jdry,

(5)

(6)

where [N] is a matrix of shape functions employed in the boundary element discretization,
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J is the transformation Jacobian and r/ is a nondimensional coordinate. The system of
equations given in eqn (4) is now rearranged such that all unknown boundary quantities
appear on the left hand side, resulting in

[K][ Y] = [H][Z] + {'¥] (7)

where {Y} is a vector of unknown boundary quantities, :Z} is a vector of prescribed
boundary conditions, and [K] and [H] are rearranged forms of the system matrices [F] and
[G], respectively. The particular integral approach (Pape and Banerjee, 1987; Henry and
Banerjee, 1988) is employed for the treatment of the discretized distributed sources. The
vector of external sources, following this technique, may be written as

f,¥i = [F]f<D Pi _[G]f<DP}(r I J I II , (8)

where {<D P
} and (<D::] are the vectors of particular integral solutions for potentials and

normal derivatives, respectively. After solving the system given in eqn (7) for the unknown
boundary variables, the potentials at interior points may be calculated. The integral rep­
resentation given in eqn (2) is now written for a point, ~, inside the domain, n, as

<D(~) = <D{'(~) +L[G(x, ~)<D;,(x) - F(x, ~)<DC(x)]dr(x) (9)

where <DC(x) = <D(x) -<DP(x), <D;,(x) = <]),,(x) -<D;;(x), and <D"(x) and <D;'(x) are the values of
the particular integral and its normal derivative, respectively, at a location, x, on the
boundary, r. The same boundary element discretization as that employed for the calculation
of the unknown boundary variables is applied to eqn (9) to obtain the expression for the
potential at an internal point, ~, as

(10)

where (<D'l. = (<D 1._ (<DI') (<DCl = f<D1_f<D1'1 and fG():)} and IF(c)\ are the vectors of
lllJ I "J I IlJ'1 f (J I J' I'" l-J

discretized boundary element kernels, G(x,~) and F(x, ~), respectively. These vectors are
generated similarly to the rows of the boundary element system matrices [G] and [F]. Since
the point ~ does not belong to the boundary r, no singular integrations are encountered in
these calculations.

3. STOCHASTIC BOU'\IDAR Y ELEMENT .Y1ETHOD

The domain. n, is assumed to be characterized by a set of random parameters, bh

i = L 2, ... , q, that are described as random variables with mathematical expectations,
b, = E[bjJ. and covariances, Cov(b i, h) = E[(h,~hj)(hl-b)], where q is the total number
of random variables. The random variables, h" may represent the random geometric
configuration or the random material parameter of the domain. The boundary conditions
and the external sources acting on the object are assumed to be deterministic. The general
perturbation formulation, developed originally for the treatment of two-dimensional prob­
lems of elastostatics (Kaljevic and Saigal. 1993), is extended for the treatment of potential
problems with a random differential operator. The salient features of the procedure are
now briefly reviewed.

The quantities that appear in eqn (4) and that depend on the random parameters
describing the problem are expanded in a Taylor series about the mathematical expectations
of the random parameters. Retaining up to second order terms in this expansion, the vector
of unknown boundary variables is written as
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(11 )

where an overbar (-) denotes the quantities that are calculated at the mathematical
expectations of the random variables: db, = bi-h; and D/Dh, denotes the derivative with
respect to a random variable, h,. Similar expressions may be written for other quantities in
eqn (4) that depend on the random parameters. The Taylor series expansions, such as in
eqn (II), are introduced into eqn (4), and after neglecting higher order terms, and equating
terms of the same order, the systems of equations for response variables, and their respective
first and second order derivatives are obtained as

(a) order zero

[KH Y} = [8HZ] + [lfI]

(b) order one

(12)

(c) order two

- fay} ra8J rDKJ - {?lfI}
[K] Dh; =L(~!J~ {Z}-L77~ [y]+ Th~' i= LL ... ,q (13)

- 'i if lDKJ {a Y} I 'I 'I lD28 J[K]{Y2 } = - I I ~b ~h Cov(b;,h)+ 7" I I~-h---::;-b'- Cov(b;,h){Z}
i=1)=1 C j (.,' .... I-li--"-I (;if

where {Y2 } is given as

I 'I 'I r Dc fl
(Y2 } = 7" I I ~.lh-~h-" I Cov (h" h).

... i = II 1 (( - J - '"

(14)

(15)

Solutions of eqns (12)-( 14) are used to calculate the response statistics of the unknown
boundary variables as

'I 'I?r?y
Cov (Y;, Y) = I I ;;-/", 0/

1Cov (h",. h,,).
III = I /I = I (Jill C)/1

(16)

(17)

Detailed expressions for the case when the random variables that describe the random
parameters are uncorrelated were given by Kaljevic and Saigal (1993). The general for­
mulation defined by eqns (12)-( 17) is now specialized for the cases of random geometric
configuration and random material parameter. respectively.

4. RANDOM GEOMETRIC CONFIGURATION

The domain, n, bounded by the contour, r. is considered here. It is assumed that the
contour r consists of two parts: a deterministic portion. f d , and a portion, r" that is
characterized by a finite set of q random parameters. The parametric equations of the
contour, f" are given as
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(18)

where x" i = 1,2, are the Cartesian coordinates of a location x on f r ; bj , j = 1,2, ... , q, are
the random parameters that are given by their mathematical expectations, bi , and their
covariances, C (17" bi), and I is a curvc parameter. For the case of random configuration,
the derivatives of the boundary clement matrix [FL. are calculated as

[FL.f = I~I (FIJ + FJI)[N] dt].()

[FL.fm = [(FIII,.I+FJm+F,J/+FJf",)[N]dry,
."

(19a)

(l9b)

where a comma denotes differentiation with respect to a random variable, and the subscripts
I and m denote the random variables 17; and 17m • respectively. Similar expressions can be
written for the derivatives of the element matrix [Cle. The derivative matrices that appear
in eqns (13) and (14) may be generated using standard assembly procedures for boundary
element matrices. The derivatives of the particular integrals are given as

itpl, = [F] IcD1'1 +[F]!<1)/" ·_([C] fcDJ'l+[C]icDJ'} )l J./ ./l J (J J J l /I) l II J (20a)

_. ([CL",: cD:;) + [G] m(cD::] J + [CLi cD::}.m + [C] {cD::} fm)' (20b)

Explicit expressions for the derivatives of the boundary element kernels C and F with
respect to the random variables, as well as the derivatives of the particular integrals for
three different cases of distributed sources, are given in the Appendix. Equations (A 1)­
(A I0) are valid for an arbitrary random contour that may be described by a set of correlated
random variables. Only the derivatives of the coordinates with respect to the random
variables are dependent on the random curve. For the cases of circular and elliptical
contours, the derivatives of the coordinates, and r are easily derived in closed form. The
parametric eq uations for these contours are given as

(a) circular contour

x = "n + R cos :} , r = )'" + R sin ,'J, (21)

where (xo')"I'R) are the geometry parameters. The coordinate pair (xo,Yo) defines the
location of the center of the circular are, and R is the radius.
(b) elliptical contour

x = x, +a cos.9 cos (P - 17 sin :) sin ~Q, r = )', +a cos ,'J sin ~+b sin.9 cos~, (22)

where (x" V" a, 17, (p) are the geometry parameters, (x,,)',) arc the coordinates of the center
of the elliptical are, (a, h) are the semi axes, and ~ is the inclination of the ellipse semiaxes.
The availability of the derivatives of these contours in the closed form enables all derivatives
of the boundary element matrices required in the present analysis to be evaluated analyti­
cally. The derivatives of the boundary element kernels with respect to the random par­
ameters involve the derivatives with respect to coordinates which may result in higher order
singularities of the derivative kernels. Special care must therefore be exercised in these
calculations. The strongly singular terms of the matrix [F] and its derivatives may not be
calculated dircctly. An indirect procedure that utilizes a state of uniform unit potentials
prescribed along the contour of the object along with zero distributed sources (Banerjee
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and Butterfield, 1981) is used to calculate the diagonal terms of thc matrix [F]. An implicit
differentiation scheme (Kaljevic and Saigal, 1993; Saigal et aI., 1989) may then be employed
to calculate the diagonal terms of the first and second order dcrivatives of the matrix [F].
The singular terms of the derivative kernel, G, however, arc calculated directly. It is notcd
that the singular term in the kernel G for potential problems has the same form as that for
two-dimensional elastostatics. It was shown by Kaljevic and Saigal (1993) that the deriva­
tives of the elastostatics kernel G do not involve higher order singularities. This permits the
use of standard integration schemes for the calculation of the derivatives of the matrix [G].

The solutions for the boundary variables and their derivatives obtained from eqns
(12)-(14) are now used to calculate the response statistics of internal potentials. The first
and second order derivatives of the internal potentials with respect to the random variables
are given as

<D (c) = <DP()<) + fG():)}T{<DC
} + {G():)}T{<Dc ( _(fF():)\Tf<Dc1 + fF():)ITf<D'1 )

J _ J" l .. J" .. "I J I .. I J I J I .. J ( J J (23a)

- ({ F(~)} )111 {<DC} + {F(~)}) {<DC}.111 + {F(~)}~" {<DC} J + {F(~)]T :<D'}/,,:)' (23b)

These derivatives are introduced into eqns (16) and (17) to obtain the mathematical
expectation and the variance of the internal potential at a location ~. It is noted that
the derivatives of the internal potentials involve the calculation of the derivatives of the
coordinates with respect to the random variables. The modeling of the interior of the
domain is therefore required in order to calculate the response statistics of internal poten­
tials. Several models to characterize the randomness of the interior of the object are
presented in the section on numerical examples. The influence of various assumptions
regarding the randomness of the internal points on response statistics is studied. It is seen
from the numerical data obtained that these assumptions do not affect the response statistics
of the boundary variables.

5. RANDOM MATERIAL PARAMETER

The domains whose material properties are characterized by a random material par­
ameter are analysed. It is seen from eqn (3) that the boundary element kernels G(x,~) and
F(x,~) do not depend on the random material parameter. k, and that in the absence of
distributed sources, the potential flow through a homogeneous domain also does not depend
on the material parameter. It may be concluded that for such cases, the random material
parameter does not affect the response of the object. Random effects related to material
characteristics are introduced only through the action of external sources. Such effects are
present even when the sources are described by deterministic functions. It is assumed that
the contribution ofexternal sources to the response may be expressed in terms of a particular
integral term, as given in eqn (8). The random parameter, k, is modeled as a homogeneous
random field with a constant mathematical expectation, k. and a covariance function,
Cov (x, y), where x and yare two points within thc domain, Q. After discretizing the
random field that describes the material parameter, k, into a set of, in general, correlated
random variables, the equations for the response variables and their derivatives are obtained
as

(a) order zero:

(b) order one:

[K]{ f} = [H]{Z} + {'IJ: (24)
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(c) order two:

I. Kaljevic and S. Saigal

fcfl {D'P} .
[K] l~;bif = 7il~ 1= 1,2, ... ,s (25)

(26)

(27a)

(27b)

where S is the number of correlated random variables, and {<D P} , and {<D~}., represent the
derivatives of the particular integral and its normal derivative with respect to the random
variables calculated at their mathematical expectations.

It is seen from eqns (AS), (A7) and (A9) given in the Appendix that the particular
integral term may be written as

(28)

where X(.'·I, xc) is a function of the spatial coordinates XI and X2 and depends on the form
of the variation of the distributed source, \f', across the domain. A similar expression may
also be written for the particular integral <1>;'. For the special case of random field dis­
cretization given as

,
k (x) = I b", M", (x),

III 1

where M",(x) are the interpolation functions defined as

(29)

MI/I(x) = g: XErl/l

otherwise
(30)

and en denotes the domain of the boundary element m, the derivatives of the particular
integral <1>" are given as

(3Ia)

(31 b)

The mixed second order derivatives for this case are all equal to zero.
A transformation of the correlated random variables into an uncorrelated set (Liu et

al. 1986b; Kaljevi6 and Saigal, 1993) is performed to reduce the number of matrix oper­
ations. For an uncorrelated set of random variables, c" i = 1,2, ... , s, defined by trans­
formation

[c} = [EW{b}, (32)

where [b] IS the vector of original random variables resulting from the random field
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discretization, {c} is the vector of transformed uncorrelated random variables, and [0] is
the matrix of eigenvectors of the discretized covariance matrix [D] whose terms are given
as dfi = Cov(b;, b), the system of equations for the terms of order two is given as

(33)

(34)

where Var (cJ denotes the variance of the random variable Cj • The systems of equations for
the respective orders zero and one have the same form as those given in terms of the original
random variables, {b}. The derivatives of a scalar function, f, with respect to the original
random variables are expressed in terms of the derivatives with respect to the transformed
variables as

a"f
3b/3b;

at 'at
--;;b- = L -;:;- 0,/
(; j I~] OCt

(35a)

(35b)

The derivatives of the vector functions arc obtained similarly.
The expressions for the response statistics of the internal potentials are derived next.

The derivatives of the potential, <1>, at an internal point, ~, with respect to a transformed
random variable, C j , are given as

<DCiCi(~) = <D~i,(~) + {G(~)} T {<D~ }cic, - {F(~)} T {<D} .'i'

(36a)

(36b)

where the transformed derivatives ofthe particular integral terms at a point, ~,are calculated
using eqns (35a,b). It is seen from eqns (36a,b) that the discretization of the random field
defined by eqns (29) and (30) is not sufficient for the calculation of the response statistics
ofthe internal potentials. Additional random variables need to be defined inside the domain
in order to calculate the derivatives of the particular integrals at the internal points. A
modified discretization of the random field may be performed by retaining the random
variables defined on the contour as depicted in eqns (29) and (30), and introducing p
additional random variables, one for each internal point for which the response statistics
are required. It is assumed that these additional random variables are defined on the
subdomains nj , j = 1,2, ... ,p, where each subdomain contains only one internal point ~j

and unj = n. The discretization of the random field is now given as

s \'+p

k(x) = L bmMm(x) + L
11/ = I nl ~", s-+- I

(37)

where the domain interpolation functions N",(x) are defined as
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Fig. 1. A triangular plate with a circular hole.

x

XEQI1I

otherwise'
(38)

For such a discretization the systems of equations for the unknown variables and their
derivatives given in eqns (24)(26) remain unchanged.

6. NUMERICAL EXAMPLES

The above I'unnulations are applied to a number of problems of potential flow through
domains characterizcd by random parameters. The domains with a random geometric
configuration are st udied hrst. It is assumed that the contour of the domain consists of
deterministic portions of arbitrary shape, and of random portions of circular and elliptical
shapes, respectively. The random circular and elliptical contours are modeled using discrete
sets of random variablcs. UncorreJated variables are employed in the present calculations
without a loss of generality. since the correlated random variables may be transformed into
an uncorrelated set using eqn (32). The domains characterized by a random material
parameter are analysed next. The random material parameter is modeled as a homogeneous
random held that is described by a constant mathematical expectation and an exponential
covanance.

Boundary element discretizations employed in the numerical examples are obtained
from convergcnce studies performed for corresponding deterministic problems. The
response statistics obtained by the present formulations are compared with the results of
Monte Carlo simulations performed using 5000 samples. The random variables for Monte
Carlo simulations arc generated using the procedures outlined by Press et al. (1990).
Numerical values used to describe the geometric configuration, the material parameter and
the distributed sourccs arc given without dimensions to make the present results applicable
to a variety of physical problems governed by Poisson's equation.

6.1. A triangulur plure \l'irh (/ circulur hole
The potential flow through a triangular plate with a circular hole, as shown in Fig. I,

is analysed. The oLlter contour of the domain is of the shape of an equilateral triangle with
side length 2u and is modeled as deterministic. The inner, circular contour is assumed to be
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Table I. Response statistics of surface potentials for a triangular plate with a circular hole along line A B

Lac.

2
3
4
5
6
7
8

This study Monte Carlo
Deterministic -------------------

solution t'[(ll] Var [cD] E[cD] Var[<I>]
-------------

0,9887 09877 (U285 x 10
,

09874 OAOl5 x lO-4
0.9884 09875 0.3401 x 10 4 0.9872 OA144xlO- 4

0.9863 0,9855 OA438 x 10 4 0,9850 OA669 x 10 4

0,9761 0.9753 0,9963 x 10 4 0.9748 0.1094 x lO-)
0.9322 0.9315 0.3530 x 10

,
09312 0.3533 x lO-J

0.7959 07962 0.6970 x 10 0.7961 0.6906 x 10)
0.5557 0.5564 0.4280 x 10 0.5565 OA299 x lO-'
0.2737 0.2740 0.6760 x 10 4 0.2740 0.6830 x 10 4

random and is described by three random variables: the radius. r. and the coordinates of
the center, Xo and Yo' These variables are characterized by their respective mathematical
expectations, r, Xo and ,vo, and standard deviations. 'l." 'l.,o and 'l.,o. The mathematical
expectation, C''cb Jo), of the random circular contour coincides with the centroid of the outer
contour. The numerical values for the geometric and material parameters of the domain
are chosen as: side length. 2a = 12 units. and the material parameter. k = I units. The
deterministic boundary conditions for the potential flow are given as: <1>" = a along the
sides AB and AC of the outer contour; linearly varying potential along the side BC from
<1>(B) = ato <1>(C) = 1.0 units; and constant potential <1> = I unit along the circular contour.
No distributed sources are present. The contour of the domain is discretized using 48
conforming quadratic boundary elements, as shown in Fig. I. The numbers in square boxes
in Fig. I denote the number of boundary elements used to discretize the corresponding
portion of the contour.

The analysis is first performed for the case when all three parameters that describe the
circular contour are assumed to be random. The statistics of random variables that describe
these parameters are taken as: r = 1.732 units, '\'0 = 0.0, .i'o = 0.0. 'l., = 0.1732 units,
'l.xo = 0.12 units and 'l.,o = 0.12 units. The response statistics for both surface potentials
and internal potentials are computed. The results for the mathematical expectations and
variances of potentials at locations 18 placed at equal distances along the side AB of the
outer contour, together with the solution of the corresponding deterministic problem, and
the results of the Monte Carlo simulation using 5000 samples, are given in Table I. A good
agreement is observed between the results obtained from the present formulations and
those from Monte Carlo simulations. except for the variances at points I and 2. These
larger discrepancies may be attributed to the corner positions of these locations (Banerjee
and Butterfield, 1981) where difficulties in the calculation of the derivatives of response
variables are more pronounced than on the smooth portions of the contour.

The response statistics for the internal potentials are calculated corresponding to two
distinct assumptions on the randomness of internal points: (a) the randomness of the
circular contour does not affect the interior of the domain (the positions of the internal
points are assumed to be deterministic). and (b) a portion of the interior enclosed by the
circle with the center C"o, J\J) and radius 21~ is assumed to be random. while the rest of the
domain is deterministic. For the deterministic portion of the domain, the derivatives of the
coordinates with respect to the random parameters are all equal to zero. The random
portion of the domain for case (b) is modeled as

x = X + Rcos q;

l' = Y + R sin (p.

(39a)

(39b)

where x and yare the Cartesian coordinates of the internal point, X = xo( 1- t) +Xot,
Y = Yo(1- t) +Jot, R = r+ (2r - r)t. and () ~ t ~ 1. The nonvanishing derivatives of X, Y
and R, with respect to the random parameters. are X'(l = I-t. Y,o = I-t, and R, = I-t.
All other first order derivatives and all second order derivatives are equal to zero.
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Table 2. Response statistics or internal potentials 1'01' a triangular plate with a circular hole along the Y-axis

Mathematical expectations Variances ( x 10 1)

Deterministic
Loc. solution

This study

f/=F' r,/=1i'
Montc Carlo
simulation

This study
------..---Monte Carlo

1'" = f I'd = 2f simulation

a
h

d

0.9362
0.9485
0.8917
0.8634
0.8955

0.935'
11.9476
11.8920
11.86'-\5
0.8956

09379
0.95112
0.8953
11.8665
118955

0.9351
0.9473
08920
0.8635
0.8956

0.3540
0.3530
0.1920
0.0386
0.0040

0.3090
0.2090
0.1270
0.0386
0.0040

0.3535
0.3502
0.1928
0.0388
0.0040

The mathematical expectations and variances of the internal potentials for locations
a-e along the Y-axis, for the two assumptions on the randomness of the interior, are given
in Table 2. The solutions for the corresponding deterministic problem and the results of
Monte Carlo simulations using 5000 samples are also given in Table 2 for the assumption
of a deterministic interior. Again, a good agreement between the results of the present
formulations and those of the Monte Carlo simulation is observed. It is seen from Table 2
that the response statistics of the internal potentials are affected by the assumption on the
randomness of interior points. The response statistics for points d and e remain the same
for both cases, since they belong to the portion that is assumed to be deterministic in both
cases.

In order to assess the influence of the random parameters describing the circular
contour on the response statistics, the computations are repeated for the cases when each
of the parameters individually is assumed to be random, while the other two are kept
deterministic. The response statistics of the internal potentials at locations a-e, obtained
by the present formulation using the assumption of a deterministic interior, are given in
Table 3. It is seen from the results in Table 3 that the randomness of the variable, Yo, does
not affect the response statistics, and that the most significant effect is caused by the
variation of the radius of the circular contour.

6.2. A circular annulus under distrihuted SOUI'CCS

The flow through a circular annulus with a deterministic outer contour of radius, rh,

and a random inner contour is analysed. The inner circular contour is described using three
random variables, 1""\0 and 1'0, as in Section 6.1. The numerical data are assumed as:
rh = 1.0 units and k = 1.0 units. The tlow is subjected to deterministic boundary conditions
given as: <DIJ = 0 along the inner contour and <D = 2ryln along the outer contour, where the
angle, Ct., is measured counterclockwise from the positive x-axis. Each contour of the domain
of the object is discrctized using 16 quadratic boundary elements.

The analysis is performed to first verify the present formulations for the flow
due to distributed sources. Three distinct sources are considered: (a) qJ(x,y) = qJo;

(b) qJ(x, y) = qJ oxv:ri, ; and (c) qJ(\.r) = qJ 0 (x 2+ .1'2)/1'1" where x andy are coordinates of
an arbitrary point in the interior of thc domain, and qJ 0 is the reference intensity of the

Table 3. Influence or random geometry parameters on the response statistics for a triangular plate with a
cirClllar hole

RadiUS R Coordinate XI> Coordinate Yo
----------,---

Loc. E[Q:>] Val' [(DI LiQ:>] Var[Q:>] E[Q:>] Var[Q:>]
--,-,-_._----_._--

a 0.9357 0.2622 x: \0 11.9361 0.7502 x 10 4 0.9360 0.1720 x 10-4

h 0.9478 0.2591 x III 11.9485 0.8030 x 10- 4 0.9483 0.1354x10 4

0.8920 0.1391 x III 0.8919 0.5125x10 4 0.8916 0.1899xI0' s

d 0.8635 02835> 10 4 08635 0.9994 x 10 5 0.8634 0.2549 x 10- 6

e 0.8956 02945 x: III 08956 0.1035 x 10 5 0.8955 0.1525 x 10-
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Fig. 2. A circular annulus under distributed sources.
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source. The distributed sources are treated using particular integrals. The particular inte­
grals, and their respective first and second order derivatives with respect to the random
variables, for these three cases of distributed sources are given in the Appendix. For each
case the reference intensity is assumed as lJIo = 1.0 units. The statistics of the random inner
contour parameters are assumed as: fa = 0.3 units, .xo = 0.0, Yo = 0.0, Ct., = 0.03 units,
Ct.xo = O. I2 units and Ct.yO = O. I2 units. The response statistics for potentials at locations A,
B, C and D of the annulus, as shown in Fig. 2, for the three cases of distributed sources
considered here are given in Table 4. The results obtained using the present formulations,
together with the corresponding deterministic solution, and the results of the Monte Carlo
simulation using 5000 samples are given in Table 4. A good agreement of the results is
observed verifying the developments for the treatment of distributed sources.

The response statistics of internal potentials at locations b--f shown in Fig. 2 are
calculated for the distributed source of a constant intensity, IJI = 1.0 units. The points b-:l
are placed at equal distances along line ago The positions of the internal points are described
by their Cartesian coordinates given in eqns (39a,b). X, Yand R are now defined as

I(
rh ) rh

X o I - - t + .xo -:- t
X = rd f;{

.xo

I( rh ) rh
Yo 1- - t + Yo -:- t

y = rd f d

V~ 0

rdo~ t~­
rh

~~ t~ 1
rh

(40a)

(40b)

(40c)

where r a ~ rd ~ rb' It is noted from eqns (40a--e) that a portion of the domain enclosed by

SAS 32: 13-F
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Table 4. Response statistics of surface potentials for a circular annulus under various distributed sources

'I' = '¥O 'P = 'Po' xyjR' 'P = '¥o' (X'+v 2)!R'
..._------ -----

Loc. This study Monte Carlo This study Monte Carlo This study Monte Carlo
- ----------~-------

A Determ. 0.1733 0.0000 0.0596
E[<1>] 0.1732 0.1731 0.0000 0.0000 0.0594 0.0594

Var[<I>] 0.252 x 10
,

0.251 x 10
,

0.135xlO' 0.137xlO J 0.126xlO- 0.128xlO- 3

B Determ. - 03772 -0.5505 -0.4909
E[<I>] -0.3761 -0.3761 -0.5492 -05493 -0.4898 -0.4898

Var[<I>] 0.342 x 10 0.338 x 10-' 0.223 x 10 0.221 x 10- 2 0.233 x 10 o.no x 10- 2

C Determ. 0.1733 0.0000 0.0596
E[<I>] 0.1732 0.1732 0.0000 0.0000 0.0594 0.0594

Var[<I>] 0.252 x 10 0.252 x 10- ' 0.116 x 10 0.118xlO- J 0.126x 10
,

O.128xI0- 3

D Determ. 0.7238 0.5505 0.6100
E[<I>] 0.7224 0.7224 0.5492 0.5492 0.6087 0.6087

Var[<I>] O.129xI0- 2 0.223 x 10- 2 O.126xlO 0.220x10 0.213x10 0.210 x 10

a concentric circle with radius I'd is random, whereas the rest of the domain is deterministic.
The derivatives of the coordinates x and y with respect to the random parameter, b, are
given as

Xh = RhcosCP+Xh (41 a)

(41 b)

where b may represent any of the three parameters that describe the random circular
contour. Similar expressions may be written for the second order derivatives of the coor­
dinates x and y. The nonvanishing derivatives of X, Yand R, with respect to the random
variables, are given as

r
rb

1---[

R = X. = Y. = i I'd
.r" ·'0 .J II l 0

(42)

The remaining first order derivatives and all second order derivatives are equal to zero. The
response statistics are calculated for three different values of I'd: (a) 1',/ = f,,; (b) I'd = 0.65rb;
and (c) I'd = rho Case (a) corresponds to the deterministic interior. case (b) represents a
partially random domain and case (c) assumes the entire domain to be random. The
response statistics of internal potentials at locations b--f for all three cases of random
interior, together with the solution of the corresponding deterministic problem, and the
results of Monte Carlo simulation using 5000 samples for the case when I'd = fa are given
in Table 5. A good agreement of the results obtained by the present formulation and from

Table 5. Influence of the randomness of internal points on the response statistics ofintcrnal potentials of a circular
annulus

Mathematical expectations Variances ( x 10 -4)

-------------~._- ------- ------

0.5779 0.5770 0.5769 0.5780 1.9750 3.3920 4.0060 1.9290
0.6063 0.6060 0.6056 0.6063 0.8185 1.3360 22440 0.7983
0.6366 0.6366 0.6363 0.6366 0.3387 0.3387 10490 0.3305
0.6647 0.6647 0.6645 0.6647 0.1200 01200 0.3778 0.1169
0.6886 0.6886 0.6885 0.6886 0.0253 0.0253 0.0750 0.0246

Deterministic
Loc. solution

b 0.5776
c 0.6061
d 0.6365
e 0.6647
f 0.6886

This study
-------------- .. ----.---- Monte Carlo

r" = fa rd = 0.65r, r" = r, simulation

This study

rd = I"" r" = 0.65rl>
--- Monte Carlo

r" = rl> simulation
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Table 6. Comparison of probabilistic boundary element analysis and Monte Carlo simulations for variations in
the standard deviation of a geometry parameter of a circular annulus

Loc.

A E[rD]

Var [rD]

B E[rD]

Var [rD]

C E[rD]

Var[<1J]

D E[rD]

Var [rD]

Coefficient of variation .5" = ex,!r
-------._---_._--_._-------------------

5% 10% 15% 20~/o

----._--------------._----------_._--

PBE 0.1733 0.1733 0.1731 0.1730
MC 0.1733 0.1733 0.1733 0.1729
PBE 0.294 x 10- 4 0.252x 10- 1 0.264 x 10- 3 0.476 X 10- 3

MC 0.289xl0 4 0.251x10 4 0.256 x 10- 4 0.449 X 10- 3

PBE -0.3769 -0.3761 - 0.3746 -0.3727
MC -0.3769 -0.3761 -0.3747 -0.3728
PBE 0.806 x 10- 0.342x10 0.726 x 10- 2 0.129x 10- 1

MC 0.796 x 10 0.338 x 10 0.714x10 0.126xlO- 1

PBE 0.1733 0.1733 0.1731 0.1731
Me 0.1733 0.1733 0.1731 0.1729
PBE 0.294 x 10- 4 0.252 x 10 1 0.264 X 10- 3 0.470 X 10- 1

MC 0.289 x 10 4 0.252 x 10 1 0.256 X 10- 3 0.449 X 10- 3

PBE 0.7234 0.7224 0.7209 0.7186
MC 0.7235 0.7224 0.7209 0.7187
PBE 0.308 x 10- ,1 0.129 x 10 0.278 x 10- 2 0.493 x 10
MC 0.305 X 10- 3 0.129xlO 0.276 x 10- 2 0.494 x 10- 2

PBE, probabilistic boundary elements: Me. Monte Carlo simulations.

the Monte Carlo simulations is observed. The Monte Carlo simulations for other two cases
were not performed. It is seen from Table 5 that different assumptions on the randomness
of the internal points may significantly influence the response statistics at internal points.
Care must be exercised in properly assessing the randomness of the interior in order to
obtain reliable results for a given analysis. It is noted that these different assumptions do
not affect the response statistics on the surface of the domain.

The analysis for the distributed source of constant intensity is now performed by
considering only the radius r a to be random, while the coordinates Xo and Yo are considered
to be deterministic. The standard deviation of the radius r a was varied from ar" = 0.015
units to ar = 0.060 units, which corresponds to a change in the coefficient of variation
from 6r ="5% to 6r = 20%, respectively. These analyses are performed in order to assess
the range of applic~bility of the present formulations. The results using both the present
formulation and Monte Carlo simulations are given in Table 6. It is seen from Table 6 that
for this example, the present formulation provides satisfactory results for a value of the
coefficient of variation of up to 20%.

6.3. A rectangular plate 'vvith an elliptical hole
The potential flow through a rectangular plate with an elliptical hole, as shown in Fig.

3, is analysed. The outer rectangular contour of the domain is assumed to be deterministic,
and the inner elliptical contour is assumed to be random. The elliptical contour is described
by five random parameters: semiaxes, a and b; coordinates of the center, Xo and Yo; and
the angle of inclination, cpo This analysis is performed in order to verify the present
formulations for a different type of random contour and for a larger number of random
variables. The dimensions of the outer contour are: 2p = 16 units, 2q = 12 units, and the
material parameter is k = 1.0 units. The deterministic boundary conditions are prescribed
as: cD" = aon line AB; cD" = 1.0 units on line CD; cD = aon line AD; cD = 1.0 units on line
BC: and cD" = aon the random elliptical contour. The contour of the domain is discretized
using 68 boundary elements, as shown in Fig. 3, where the numbers in the square boxes
denote the number of boundary elements used in discretizing the corresponding section of
the contour. No distributed sources are present. All five parameters that describe the
elliptical contour are assumed to be random, and their statistics are taken as: a = 2.0 units,
iJ = 1.0 units, .xo = 0.0, Po = 0.0, {jJ = 0.0, Cia = 0.24 units, IX" = 0.12 units, ClxO = 0.10 units,
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Fig. 3. A rectangular plate with an elliptical hole.

O:yO = 0.10 units andx,p = 0.05 rad. The response statistics of contour potentials for the
locations 1-6 on the line AB as well as for the points E. F, Ci and H on the elliptical contour,
together with the solution of the corresponding deterministic problem, and the results of
the Monte Carlo simulation using 5000 samples are given in Table 7. A good agreement of
the results is observed which shows a good performance of the present formulation for a
larger number of random variables employed to describe the random contour.

6.4. A plate geometry with spatially random material parameter
The potential flow through a domain characterized by a spatially random material

parameter is analysed by considering the plate geometry shown in Fig. 4. The deterministic
contour of the plate consists of the straight line segments A B, DE and EA, each of length
2a, and the semicircle BCD with radius a. where a = 4.0 units. The potential flow due to a
distributed source of constant intensity. 'fI = 1.0 unit. is analysed. The deterministic bound­
ary conditions are prescribed as: <D" = 0 along line A E; <D = 1.0 unit along line DE;
<D = - 20:!n units. along the circular are, BD. where the angle, 0:, is measured as shown in
Fig. 4; and <D = - I unit along line DE. The random material parameter, k, is modeled as
a homogeneous random field, with a constant mathematical expectation, i(, and an
exponential covariance as

E[k(x)] = J:.

Table 7. Response statistics for surface potentials on a rectangular plate with an elliptical hole

(43)

(44)

This study Montc Carlo
Deterministic -------_.. - -----------------

Lac. solution £[<1>] Var [<1>] E[<1>] Var [<1>]
------------------_..._------------ - -------------

1 0.0776 0.0776 0.1093x 10 0.0776 0.1116xlO- s

2 0.2353 0.2352 0.7748 x 10 5 0.2352 0.8012xlO- s

0.4065 0.4065 0.9253 x 10- 0.4065 0.9084 x IO- s

4 0.5935 0.5935 0.8253 x 10 0.5935 0.8753 x 10- 5

5 0.7647 0.7648 0.7748 x 10 5 0.7648 0.7811x10 5

6 0.9224 0.9224 0.1093x10 5 09224 0.1099 x 10-'

£ 0.6873 0.6870 0.3217xlO-< 0.6874 0.3282x 10- 3

F 0.5000 0.5000 0.1438 x 10
,

05002 0.1461 x 10- 3

G 0.3127 0.3130 0.3217 x 10
,

0.3127 0.3223 x 10'
H 0.5000 0.5000 0.1438 x 10

,
0.4998 O.1479x10 3
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Fig. 4. Plate geometry used for the study of spatial variability of the material parameter.

where ('I and ('2 are the correlation lengths, (J2 is the variance of the random field, and x and
yare two points in the interior of the domain with respective coordinates (x], X2) and
(yj,Yl). The numerical values for the parameters that describe the random field are taken
as ('I = 6.0, ('2 = 4.0. k = 1.0 and (J = 0.14. The discretization of the random field is per­
formed using eqn (37). for which the interpolation functions are defined in eqns (30) and
(38). The total number of random variables used to discretize the random field is n = 11" + I1p ,

where 11" is the number of boundary elements used to discretize the contour of the domain
and I1p is the number of internal points for which the response statistics are required. The
boundary element discretization, together with the locations of internal points, are shown
in Fig. 4. For this problem, n,. = 24 and 111' = 10, resulting in a total of 11 = 34 random
variables. It is seen from eqn (44) that the discretization of the random field results in a set
of correlated random variables. This set is transformed into an uncorrelated set and the
analysis is performed by retaining different numbers. l1u • of the uncorrelated variables. The
response statistics of the internal potentials at the locations 1-10 are given in Table 8.
The results of Monte Carlo simulations using 5000 samples are also given in Table 8. The
random variables for the Monte Carlo simulations are generated in two steps as in Kaljevic
and Saigal (1993). It is seen from Table 8 that a good agreement of results is achieved

Table 8. Analysis of potential flow through a plate geometry with spatially random material parameter

Mathematical expectations Variances
- - -----_..._--------

This study This study
Deterministic -Monte Carlo -- ---------Monte Carlo

Loc. solution 5 RV to RV 20 RV simulation 5 RV 10 RV 20 RV simulation
------- -------------_..._- - ---------

I.9546 1.9800 1.9S00 1.9813 I.9SIS 0.0287 0.0502 0.0570 0.0623
2 I.9128 1.9369 I.93S0 1.9392 19412 0.0254 0.0321 0.0366 0.0375
3 1.8087 18305 1.8321 18335 18388 0.0182 0.0197 0.0200 0.0218
4 1.5541 1.5716 157J2 1.5749 1.5801 0.0116 0.0121 0.0124 0.0142
5 0.9930 1.0019 10030 1.0048 1.0083 0.0035 0.0039 0.0047 0.0052
6 0.9554 09810 0.9810 0.9821 0.9865 0.0293 0.0503 0.0581 0.0620
7 0.9167 0.9407 09419 0.9431 09477 00262 0.0328 0.0346 0.0389
8 0.8276 08494 0.8511 0.8524 0.8585 0.0186 0.0202 0.0204 0.0244
9 0.6372 06548 0.65M 0.6579 0.6629 0.0120 0.0125 0.0128 0.0147

10 0.2185 0.2275 O.22S5 0.2303 0.2333 0.0036 0.0041 0.0049 0.0054
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with a relatively small number of random variables retained. A fast convergence of the
computations with the number of random variables retained is also seen from Table 8.

7. CONCLUSIONS

The problems of stochastic potential flow through homogeneous domains that are
characterized by a set of random parameters were analysed in this study. The probabilistic
boundary element formulation, originally developed for the analysis of two-dimensional
problems in elastostatics, was extended for the treatment of these problems. The random
operator of the governing differential equation was described by a set of correlated random
variables that may represent either a random geometric configuration or a random material
parameter of the domain. The random geometric configuration was modeled by a finite set
of correlated random variables while the random material parameter was modeled as a
homogeneous random field with a constant mathematical expectation over the domain.
The random field was first discretized into a finite set of correlated random variables and
then the general procedure was applied. The transformation of the correlated random
variables into an uncorrelated set was performed to reduce the number of operations. The
response statistics obtained from the present formulations were compared with those
obtained from Monte Carlo simulations using 5000 samples and a good agreement between
results was observed.

The response statistics of internal potentials were also calculated for both cases of
randomness. These calculations required the modeling of the interior of the domain being
analysed. For domains with random geometric configuration, the positions of the internal
points were expressed in terms of parameters that define the random contour. Several
models of the random interior were analysed including: (a) deterministic interior, (b)
partially random interior and (c) fully random interior. It was observed from the numerical
results that the assumptions on the randomness of the interior may significantly influence
the statistics of internal potentials. It is noted, however, that these assumptions do not
affect the results for boundary variables. For the case of random material parameter,
additional variables were introduced to represent the interior of the domain. The response
statistics of the contour variables are not affected by these additional variables if the original
(nontransformed) random variables are used in the calculations. Variances of transformed
random variables, however, depend on the number of random variables defined in the
interior. This causes differences in the calculations of val ues of response variables at the
contour of the object, when only a part of the transformed set is retained in the analysis.
This difference is pronounced only if a very small number of the transformed variables is
retained, and becomes negligible for a larger number of variables retained.

An assessment of the influence of individual random variables on the response statistics
was also done using numerical data. It was observed that for the circular contour, the
radius has the most significant effect on the response, while the effect of the randomness of
the coordinates of the center is negligible. The range of application of the present for­
mulations was investigated, and it was seen from the example problems considered here
that satisfactory results are obtained for a value of the coefficient of variation of the random
parameter of up to 20%.
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APPENDIX

Detailed expressions for the derivatives of boundary element kernels and the particular integral expressions
for distributed sources that are considered in this study are given below.

(a) Kernel G:

G(x, ~), =
I I

---r
2][ r .1

(AI)

(b) Kernel F:

I(I I'
G(x, ~)/'" = - -2 - -,1'.11'.", + -; 1'.1"')

IT r" I

I [2 1 ]F(x. ~)I = -::;- --~ r'Y,n, + -, (y,.ln, +Y,n>./)
~rr,-' r-

(A2)

(A3)

F(x, ~),'" = -- ~ [(!:.rlr", - 2 r,,,,')y,n, -- -~ riC! ,,,,n,+y,n,.m) - 2 r ",(y<./n, +y,n,J
....R,.4 y-',' r-1 r1

+ ~ (y,./,,,n, +yjl.,.",-r-Y,,,,n,,+ y,n d ",)]. (A4)
r

In eqns (A 1)-(A4). the comma denotes differentiation with respect to random variables; I and m denote the
random variables bl and h"" respectively; repeated indices denote summation; and the quantities r, n, and y"
s = 1,2, were defined in the paragraph following eqn (3). The derivatives of the radius, r, and its projections on
the coordinate axes, .1'" as well as the derivatives of the Jacobian, J, with respect to the random variables were
given by Kaljevic and Saigal (1993) and are not repeated here.

(c) Particular integrals:

(i) 'P(x"x,) = 'Po

(A5)
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(1'1') 'H( . 'Po , ')
T X"x,) =-(XI+X,

a'

I. Kaljevic and S, Saigal

f! '1'0_
<D I ~ - 2k X,,\,,1 (A6a)

(A6b)

(A6c)

(A6d)

'P
<D I- = - -_O~(x~+x~)

12ka' -
(A7)

'" 'P ll 3 ' J , Jo.v:;/I! = - --( XTXlj'\l.i+X '\1.i/+3x2X:UX2,j+X· xVi)

3ka'

¢:;,Im = - ~ [6X j
n l'\Li X I./+ 3xT(nLixU+n1.iXI,i+fljXlJi) +x~nl.lJ

3ka"

(A8a)

(ASb)

(A8c)

<DI,,' = \flo 1 [ (3'" ") (3' ')]- 12k -;;h x, XI +x, Il, +x, x, +XI n, (A9)

"'1'- ~~[v(i\"+X')\' +x'(3v2+x")v]'-VI - - 12k ab ." .. ; ." 1.1 " ·'2 ., "',I

"'I' - _ ~~ '[6x x,' + 3(v' + X')\' ]/1 +" (3,·2 -'- v')1l'-VII,! - 12k ah ~ . I· 2- l.f -'-I -:;. 2) 1 -'-] .\ I ,·'-2 U

(AIOa)

'Po I
<D~.Im = - 12k ---;;J;{[6(X2Xl./X2.1I1+XIXI./X:;.m+X1X2XI,l,/i)

+ 6(x,x'm + x,x,.m)x'I+3(x~ + XDX'I",]11 , T [6x, x,x u + 3(x~ +X~)X2.I]IlI.'"

+ [(3x; +xj)x,.m + 2(3x, XI.", +X2X,,,,)]I11/ +x, (3x; -i-xDl1l/m

In eqns (A5)-(A 10), <DI' denotes the particular integral for the potential, <Df, is the corresponding normal derivative
of the particular integral, 'P ll represents the reference intensity ofa distributed source, a and b are the normalization
lengths, and x, and X, represent the coordinates of the point x in the domain Q.


